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Abstract

Buffer overflow attacks have been causing serious secu-
rity problems for decades. With more embedded systems
networked, it becomes an important research problem to
defend embedded systems against buffer overflow attacks.
In this paper, we propose the Hardware/Software Address
Protection (HSAP) technique to solve this problem. We first
classify buffer overflow attacks into two categories (stack
smashing attacks and function pointer attacks) and then
provide two corresponding defending strategies. In our
technique, hardware boundary check method and function
pointer XOR method are used to protect a system against
stack smashing attacks and function pointer attacks, re-
spectively.

Although the focus of the HSAP technique is on embed-
ded systems because of the availability of hardware sup-
port, we show that the HSAP technique can be applied to
any type of processors to defend against buffer overflow at-
tacks. We use four classes of processors to illustrate that
the applicability of our technique is independent of archi-
tectures. We experiment with our HSAP technique in ARM
Evaluator-7T simulation development environments. The
results show that our HSAP technique can defend a sys-
tem against more types of buffer overflow attacks with little
overhead than the previous work.

1 Introduction

It is known that buffer overflow attacks have been caus-
ing serious security problems for decades and at least 50%
of today’s widely exploited vulnerabilities are caused by
buffer overflow and the ratio is increasing over time. One
of the early famous examples is the Internet worm in 1988
that made use of buffer overflow vulnerabilities in fingerd
and infected thousands of computers [1–3]. Recent exam-
ples include the infamous Code Red, Code Red II and their
variations which exploited known buffer overflow vulner-
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abilities in the Microsoft Index Service DLL. Another ex-
ample, Sapphire or SQL Slammer, which occurred in the
end of January of 2003, seriously slowed down the network
by generating massive amount of traffic. This worm espe-
cially caused serious problems for the networks in Asia.
It exploited the buffer overflow vulnerabilities in MS SQL
server so its own hostile code can be executed.

Buffer overflow attacks cause serious damages to gen-
eral purpose systems as well as to special purpose embed-
ded systems. Because of the growing deployment of net-
worked embedded systems, security becomes one of the
most significant issues for embedded systems. Many spe-
cial purpose systems are used in military and other critical
applications. For example, a battle ship or an aircraft has
thousands of embedded components, and a nuclear plant
has numerous networked embedded controllers. A hostile
penetration by using buffer overflow in such facilities could
cause dramatic damages.

The design of embedded systems is not easy due to the
strict requirements in latency, throughput, power consump-
tion, area, cost, etc. With the increasing complexity of em-
bedded applications, it becomes more attractive and neces-
sary to design an embedded system by integrating as many
off-the-shelf components as possible. A serious problem
arises: how to check whether these components have buffer
overflow vulnerabilities and how to protect an embedded
system application from buffer overflow attacks? Note that
the source code of most components is not available to sys-
tem integrations, so it is hard to use a pure language-based
approach to solve this problem. A hardware design is nec-
essary if the software method is unable to achieve some
of the requirements. Since hardware/software co-design
is a common practice in embedded system designs such
as using FPGA design or adding new instructions, we be-
lieve that an effective solution to protect embedded systems
against buffer overflow attacks should lie on the combina-
tion of hardware and compiler. This paper will propose
a method that uses both hardware and software to defend
a system against buffer overflow attacks even without the
knowledge of the source code.



This paper presents an effective approach with little
overhead, called HSAP: Hardware/Software Address Pro-
tection, which can avoid stack overflows and minimize
the damage of any other overflows such as heap overflow
or BSS overflow even in the presence of insecure third-
party components without the knowledge of the source
code. We classify overflow-based attacks into two cat-
egories: stack smashing attacks and function pointer at-
tacks. HSAP approaches each of them with different mech-
anisms. For stack smashing attacks, the most common at-
tacks, our method can completely protect a system against
these attacks. For function pointer attacks, our method
will make it extremely hard for a hacker to change a func-
tion pointer leading to the hostile code. More specifically,
HSAP achieves the following properties:

� For stack smashing attacks , the most common attack-
ing method, it completely protects the return address,
frame pointers, and arguments from being overwritten
in the stack. Therefore, the system is shielded from
this type of attacks.

� For function pointers such as shared function pointers
in GOT (Global Offset Table) or local function point-
ers in heap or BSS (Block Storage Segment), HSAP
makes it extremely hard for a hacker to change any
function pointer to point the new address to the be-
ginning of the inserted hostile code. This is enforced
by the hardware instructions to guarantee that jump
addresses are encrypted so any third-party software
components must follow the secure instructions in or-
der to make the code runnable.

Although the focus of the HSAP technique is on embed-
ded systems because of the availability of hardware sup-
port in embedded system designs, we show that the HSAP
technique is general enough to be applied to various types
of processors. Based on the different stack structures, we
classify processors into 4 classes and show the HSAP tech-
nique can be applied to all these four classes of proces-
sors and is independent of architectures. We experiment
with our HSAP technique in ARM Evaluator-7T simula-
tion development environments. Our experiments results
show that HSAP can defend a system against more types of
buffer overflow attacks with little overhead compared with
the previous work.

The remainder of this paper is organized as follows.
Section 2 gives a brief discussion of related work. In sec-
tion 3, examples are given to show the basic buffer over-
flow attack methods that provide the necessary background
for understanding our approach. Our Hardware/Software
defending approach, HSAP, is presented in Section 4. Sec-
tion 5 discusses the implementation of our HSAP approach
on various processors. The performance comparison and
experiments are presented in Section 6. Section 7 con-
cludes this paper.

2 Background and Related Work

Buffer overflow vulnerabilities appear where an appli-
cation reads external information into a buffer using vul-
nerable library function. The possible places that have
overflow vulnerabilities include stack, heap, BSS (Block
Storage Segment), or any other places that store variables.
Some typical examples about basic buffer overflow attack
methods are given in Section 3 based on the stack structure
of Intel-like processors.

The most common attacks target at stack overflows be-
cause it is not hard to prepare a well-crafted buffer such
that the return address is changed and set to the beginning
of malicious code that was inserted in the buffer. Such at-
tacks are often named stack smashing attacks. The basic
knowledge of stack smashing attacks is introduced in [4,5].

The most common strategy to exploit stack overflows is
as follows:

1. Find a program with stack-overflow vulnerabilities
and prepare a buffer that can overflow its stack frame
so that the return address is changed.

2. Send this buffer as the input to the target program.

3. Make the new return address jump to the inserted hos-
tile code that was originally copied from the buffer.

An attack based on heap or BSS uses a similar idea.
For example, it can change a function pointer in heap or
BSS to point to the inserted hostile code. The heap/BSS-
based overflows are becoming common today. The detailed
descriptions of heap/BSS-based smashing attacks can be
found in [6–8]. A new class of vulnerabilities, “format
string bugs”, was disclosed in 2000. The detailed descrip-
tions of the exploitation of printf vulnerabilities can be
found in [9].

A common approach to solve this problem is to ask pro-
grammers to always do boundary checks. However, it is
not realistic to assume that all programmers will follow this
good practice or to assume every off-the-shelf software is
immune to buffer overflows. The use of the safe program-
ming languages is effective to defend against buffer over-
flow attacks. But for embedded system applications, most
software is still written in “unsafe” languages such as C
or assembly. It is also impractical to require all software
components to use the same language or to be compiled
by the same compiler. Therefore, it is very hard for a sys-
tem integrator to check buffer overflow vulnerabilities of a
component based on a pure language-based approach.

The static checking method uses the strategy to detect
the vulnerabilities by analyzing the code [10–13] by soft-
ware tools. While such tools can greatly help programmers
find the vulnerabilities of their code, the protection pro-
vided may be incomplete and imprecise, as only known
vulnerabilities can be detected and the general buffer over-
flow detection problem is undecidable.

The dynamic checking method detects buffer overflow
vulnerabilities during the program execution. Basically,



two different strategies, runtime boundary checking and
program testing, are used in this method. Runtime bound-
ary checking strategy [14–17] adds instructions to check
array bounds and performs pointer checking in run time.
While using this strategy may completely protect a system
against buffer overflow attacks, a big performance over-
head may occur especially for array and pointer inten-
sive applications. Program testing strategy [18–21] checks
buffer overflow vulnerabilities by executing programs with
specific inputs. While using this strategy can catch most
vulnerabilities, the protection may not be complete because
the detection depends on test data to cause overflows.

It is very common that the hostile code is inserted into
the stack and then executed. Based on this, a strategy that
can make the stack non-executable has been used to imple-
ment a Linux kernel patch that removes the stack execu-
tion permission [22]. However, this technique can not de-
feat a type of attacks using the return-into-libc technique,
in which the vulnerable function can return into a mem-
ory area occupied by a dynamic library [23, 24]. Consid-
ering the problems caused by a non-executable stack (for
example, function trampolines for nested functions need
executable stacks), this strategy is not very applicable.

A method that intercepts vulnerable functions and
forces verification of critical elements of stacks is proposed
in [25]. Libsafe and Libverification are implemented as dy-
namically loadable libraries. The advantage of this method
is that it doesn’t need source code. However, it can not
defend a system against heap/BSS-based smashing attacks
[6–8].

Another promising approach uses compilers to automat-
ically add extra instructions to guard stack at running time.
The research efforts to guard the stack based on this ap-
proach include StackShield, StackGuard, IBM SSP, Stack-
Ghost,etc. [26–29].

� StackShield [27] is a modification of gcc. It protects
a return address by storing it in a separate stack. It
can only protect a system against a particular type of
stack smashing attacks that need to overwrite return
addresses.

� StackGuard, also a modification of gcc, is imple-
mented based on the idea using a canary to guard
return addresses [26]. StackGuard changes the pro-
logue and epilogue of a function call. It pushes a
canary right above a return address in the stack in
the prologue and checks whether the canary has been
changed in the epilogue. StackGuard is a reasonable
way of defending a system against buffer overflow at-
tacks that overwrite the return address.

� Microsoft’s /GS protection [30] uses the similar idea
that StackGuard uses, and it further provides the pro-
tection for the frame pointer. In Microsoft’s /GS pro-
tection, the random canary is put between the frame
pointer and local variables.

� IBM SSP [28] uses the similar strategy to protect the
frame pointer and return address (random canary).
Furthermore, it provides protections for local vari-
ables and function’s arguments. In IBM SSP, local
variables are reordered in such a way that pointers are
placed before a possibly attacked buffer to avoid the
corruption of pointers. And pointers in function argu-
ments are copied to an area preceding a local variable
buffer [28].

� Under Sun Microsystem’s Sparc processor architec-
ture, some techniques to protect the return address
by modifying the kernel are proposed in [29]. A
tool called StackGhost is implemented to transpar-
ently and automatically guard applications by XOR-
ing return address in the kernel. StackGhost is based
on the specific hardware platform and needs to revise
the kernel. So it can not be applied to solve the general
stack smashing attack problems.

StackShield and StackGuard can defend against stack
smashing attacks that overwrite the return address. How-
ever, they have four flaws:

1. They don’t protect function arguments and local vari-
ables, which are used to exploit in [31, 32].

2. They don’t protect frame pointers that are used to ex-
ploit in [32, 33].

3. They detect an attacks after a function finishes, which
gives hackers a code window to play with and exploit
[6–8, 31, 32].

4. They need source code so they may not be applied
to protect third party software components that only
provide the executable code.

Microsoft’s /GS provides the protection for frame point-
ers so it can avoid the vulnerabilities in flaw 2. IBM SSP
can avoid flaw 1 and 2 subject to some limitation for cer-
tain source programs. It can not avoid the vulnerabilities
in flaw 3 if an attacker combines heap/BSS-based smash-
ing attacks [6–8] with the stack smashing attacks [31, 32].
Considering flaw 4, none of these techniques can be ap-
plied to special purpose systems such as aircraft control
systems which use lots of third party software components.

In [34], PointGuard is proposed to protect pointers from
buffer overflow attacks by encrypting pointer values while
they are in memory and decrypting them before dereferenc-
ing. We use the similar idea to protect function pointers.
While PointGuard can protect a system from the vulnera-
bilities in flaw 1-3, it needs source code and requires pro-
grammers to manually add PointGuard protection, which
limit its applicability somehow for embedded system pro-
tection.

3 Buffer Overflow Attacks

In this section, the examples for basic buffer overflow
attack methods are shown to provide the background for



understanding why our approach is necessary and how it
works. A common stack smashing attack example is shown
first. Then we give two advanced stack smashing attack ex-
amples. Finally, a BSS overflow attack example is given.
The stack structure of Intel x86 processors (see Section 5
for information on other processor types) is used in these
examples because it is easy to explain and understand.
More issues related to architectures are discussed in Sec-
tion 5.

main(int argc, char *argv[])
{

if(argc > 1)
copy(argv[1]);

}

sp
buffer[0]

attack code

buffer[511]

previous fpfp
return address

argv[1]

Stack growth

Memory growth 

(b)

{
copy(char *msg)

char buffer[512];
strcpy(buffer,msg);

}

(a)

Figure 1. (a) Vulnerable program 1. (b) The
stack structure and attack.

Vulnerable program 1 is shown in Figure 1(a). Fig-
ure 1(b) shows a typical stack structure after function
copy() is called, where arguments, return address, previous
frame pointer, and local variables are pushed into the stack
one by one. The arrows in Figure 1(b) show the growth di-
rections of stack and memory respectively. Function copy
has the most common stack overflow vulnerability. It uses
strcpy() to copy the inputs into buffer[]. Since strcpy() does
not check the size of the inputs, it may copy more than 512
characters into buffer[]. Therefore, the inputs can overflow
the return address in the stack and make it point to the at-
tack code injected in buffer[] as shown in Figure 1(b). Then
the attack code will be executed after the program returns
from copy() to main(). Almost all techniques introduced in
Section 2 can defend against this kind of attacks. A varia-
tion of this kind of attacks is to overflow previous fp only.
Since previous fp will point to the stack frame of main()
after returning from copy(), the similar attack can be acti-
vated when returning from main(). It is used in [32, 33] to
defeat the protections of StackShield and StackGuard.

Even if the whole stack frame is protected, we still can
not defend against the stack smashing attack shown in Fig-
ure 2. The vulnerable function copy() in Figure 2(b) has
one local pointer p and calls strcpy() twice. The location
of p ( Figure 2(b)) is below the location of buffer[] in the
stack. The attack is deployed as follows: 1) In the first str-
cpy(), the attack code is injected into the buffer and p is
overflown to point to the entry of printf in the shared func-
tion pointer table GOT; 2) The address of the attack code
is copied to the entry of printf in GOT by the second str-
cpy(); 3) The attack code is activated when the program

sp

(a)

copy(char **msg)
{ char *p;

char buffer[512];

strcpy(p,msg[1]);
p=buffer;

}

{
main(int argc, char *argv[])

strcpy(p,msg[2]);

if(argc > 1)
copy(argv);

}

argv
return address
previous fpfp

buffer[0]

       p

Memory growth 

Stack growth

buffer[511]

1st overflow:
Point p to GOT 

(b)

printf("Finished!");

attack code

2nd overflow:
Change the entry of 

"printf" in GOT as  
the address of the  
the attack code  

GOT

Figure 2. (a) Vulnerable program 2. (b) The
stack structure and attack.

executes the call printf�”Finished!”� in copy(). This ex-
ample shows that the shared function pointer table GOT
has to be protected to defend against this kind of attacks.

main(int argc, char *argv[])
{

if(argc > 1)
copy(argv[1]);

}

sp
buffer[0]

attack code

buffer[511]

argv[1]
return address
previous fpfp

fptr

}

int good(const char *str)

}
.............

copy(char *msg)

fptr=(int(*)(const char *str))good;
strcpy(buffer,msg);
(void)(*fptr)(buffer);

char buffer[512];
int (*fptr)(const char *str);

Memory growth 

Stack growth

(a) (b)

{

{

Figure 3. (a) Vulnerable program 3. (b) The
stack structure and attack.

Our third example (Figure 3) shows that the local func-
tion pointer can be exploited in the stack. In this vulner-
able program, copy() (Figure 3(a)), strcpy() is called first
and then the function pointed by function pointer fptr is
executed. In the stack (Figure 3(b)), the location of fptr
is below the location of buffer[]. Thus, fptr can be over-
flowed and pointed to the attack code by strcpy(). Then,
the execution of (void)(*fptr)(buffer) will activate the at-
tack code. Figure 4 shows a similar example to exploit
the local function pointer in BSS. These examples show
that local function pointers need to be protected to defend
against this kind of attacks.



main(int argc, char *argv[])
{

if(argc > 1)
copy(argv[1]);

}

buffer[0]

attack code

buffer[511]

fptr

(a)

static char buffer[512];
static int (*fptr)(const char *str);

int good(const char *str){
.............

}
copy(char *msg) {
fptr=(int(*)(const char *str))good;

(void)(*fptr)(buffer);
strcpy(buffer,msg);

}

(b)

Memory growth BSS

Stack growth 

Figure 4. (a) Vulnerable program 4. (b) The
BSS structure and attack.

4 HSAP: Hardware/Software Address Pro-
tection

In this section, we first classify buffer overflow attacks
into two categories. Then two corresponding defending
strategies are proposed. Finally, security analysis is per-
formed.

4.1 The Categories of Buffer Overflow Attacks

It is extremely hard to design a pure hardware scheme
that protects all variables in stack, heap, BSS, or any
data segments, from being overwritten by buffer overflows.
This is because, from the hardware point of view, boundary
information of each variable is not present for most con-
temporary hardware systems. Therefore, we should try to
achieve a reasonable goal that is implementable with little
overhead so that a secure real-time embedded system can
be built.

We can classify overflow-based attacks into two cate-
gories:

1. Stack smashing attacks. This attack either over-
writes a return addresses as shown in Figure 1 or over-
writes a frame pointer, which indirectly changes a re-
turn address when the caller function returns. This is
the easiest attack for a hacker to do, and also the most
common one.

2. Function pointer attacks. Based on different linking
methods (static linking and dynamic linking), func-
tion pointers can be divided into two types: local
function pointers and shared function pointers. Ac-
cordingly, there are two types of function pointer at-
tacks: local function pointer attacks and shared func-
tion pointer attacks.

A local function pointer is a pointer pointing to a func-
tion. Its value is determined by the linker when an ex-
ecutable file is generated during linking. A local func-
tion pointer can be exploited either directly as shown

in Figure 3-4 or indirectly by using a similar method
as shown in Figure 2. If a vulnerable program has
function pointers and has a particular code sequence
that causes two overflows, a hacker may be able to
change a local function pointer that is stored in heap,
BSS or stack.

A shared function pointer is a pointer pointing to a
shared function. Its value is determined by the dy-
namic linker when a shared function is loaded into
the memory during running time. Since it is com-
mon that a program is dynamically linked with library
functions, there is usually a table storing shared func-
tion pointers in a program image. A shared function
pointer attack activates the attack code by exploiting a
shared function pointer in this table. For example, the
shared function pointer pointing to “printf” in GOT is
changed to point to the attack code in Figure 2.

Function pointer attacks are not as easy to exploit by
a hacker as stack smashing attacks.

Our goal is to make sure that it is extremely hard for
a program to run an inserted hostile code by overflowing
any variables in stack, heap, or BBS. Once this goal is
achieved, the hostile program in a buffer can not be run
by buffer overflows. Moreover, we have different levels of
strength to deal with the above two types of attacks. For
stack smashing attacks, the most common attacking meth-
ods, our goal is to completely defend against such attacks.
For local function pointer attacks, our goal is to make a
hacker extremely hard to change a function pointer leading
to his hostile code.

4.2 The HSAP Technique

4.2.1 Basic Concepts

Before describing the details of our scheme, we need the
following definition.

Definition 4.1. A jump pointer is a location that stores
an address to a code segment. A program can jump to the
address stored in a jump pointer.

A possible jump pointer can be a location that stores a
return address in a stack frame, or a location that stores a
function pointer, or an entry in a shared function pointer ta-
ble such as GOT. The goal of our technique is to make sure
no jump pointers can be changed to point to the inserted
hostile code.

The existing protection schemes using special compiler
features such as StackGuard, StackShield, IBM SSP, Mi-
crosoft /GS, etc., do not provide complete protection for
jump pointers. None of these techniques can protect jump
pointers in the heap or BSS. As shown in Figure 4, a
hacker can deploy a local function pointer attack by chang-
ing a function pointer to point to the attack code. Al-
though PointGuard can protect such jump pointers, it re-
quires source code, which may not be provided for most
third party software components.



The technique we propose, called HSAP: Hard-
ware/Software Address Protection, provides the following
protections:

1. Protect return addresses from being overflown.

2. Protect frame pointers from being overflown.

3. Protect any other jump pointers (function pointers)
from being exploited.

Since one of the major applications of HSAP is the de-
sign of a secure and real-time embedded system, in ad-
dition to the concern of security, the performance is an-
other serious requirement. It is not tolerable to have signifi-
cant performance loss using software approaches. We must
study special hardware support to minimize performance
loss and prove that the security requirements are met. We
also need to create an effective check and protection mech-
anism to deal with insecure third party components without
knowing the source code.

HSAP requires two components: stack smashing pro-
tection and function pointer XOR. We will explain why
HSAP needs both of them later.

4.2.2 Component 1: Stack Smashing Protection

The protection scheme is to perform hardware boundary
check using the current value of the frame pointer. The
basic approach is:

1. An “address check” phase is added before the “write”
phase in the pipeline.

2. The write operation is denied when the target’s ad-
dress is equal to or bigger than the value of frame
pointer.

The implementation of this hardware boundary check on
different processors may be different because of different
stack structures. The implementation details can be found
in Section 5.

The advantages of this approach are as follows: First,
this scheme will guarantee that the frame pointer, return ad-
dress and arguments will not be replaced by any overflow-
ing buffer. Therefore, we can defend a system against stack
smashing attacks completely. Second, boundary checking
is implemented by a pipeline phase, so there is little per-
formance overhead (� �). Finally, the source code and the
extra protection code are not needed.

Our stack smashing protection technique requires
that third party software developers put variables into
data/BSS/heap section (define as global variables, static
variables, or dynamic memory allocation) rather than stack
section (define as local variables) if these variables needs
to be changed in further function calls. To release this re-
quirement, new stack smashing protection techniques have
been developed in [35].

4.2.3 Component 2: Function Pointer XOR
To protect function pointers from being exploited, we use
the following approach:

� Randomly assign a key to each process when it is gen-
erated. Keep the key in a special register �.

� Add a new jump instruction, ����, to an instruc-
tion set whose operations are: first XOR the input ad-
dress with � (the key), and then jump to this XORed
address. For example, “���� �” will include two
operations: (1) � �

� � xor �; (2) ��� � �, The
XOR operation is done automatically by the hard-
ware when the jump instruction is executed. We pro-
pose to enhance the common instruction set with ad-
ditional instructions for security purpose. Then any
third party must use these secure instructions to write
their code to comply with security requirements and
this enforcement can be easily checked with their bi-
nary code.

Our function pointer protection technique has two re-
quirements for third party software developers:

1. When they assign the address of a function to a func-
tion pointer, the address of the function is first XORed
with � (the key) and then the result is put into a func-
tion pointer.

2. When they call functions using function pointers, they
must use the secure jump instruction “����”.

For the third party, these requirements can be easily
achieved. For example, they can revise the linker and
the dynamic linker to process local function pointers and
shared function pointers, respectively. As a system inte-
grator, we can easily check whether ���� has been used
to secure all function pointer calls with their binary code.
Therefore, the source code is not needed for security check.

If a hacker changes a function pointer and makes it point
to the attack code, the attack code can not be activated
because the real address that the program jumps to is the
XORed address with the key. Since the key is randomly
generated for each process, it is extremely hard for a hacker
to guess the key. The key is stored in a special register,
therefore, the key value cannot be overwritten by buffer
overflow attacks.

4.2.4 The Necessity of Two Components

Both of these two components are necessary. Function
pointer XOR is required to secure local function point-
ers and shared function pointers. Though we can use the
similar idea to protect the return addresses, it cannot pro-
tect frame pointers and arguments in a stack. So we need
stack smashing protection. Using these two components
together, we can achieve a sound solution for buffer over-
flow attacks with little overhead. Both components can
be efficiently implemented on various processors, which is
discussed and analyzed in Section 5.



4.3 Security Analysis

The HSAP technique protects important stack struc-
tures, shared function pointers, and local function pointers.
However, it is still possible that a variable can be overwrit-
ten by a pointer in a heap or BSS. Then an attack through a
file name like in [1–3] can be deployed. There is too much
overhead if we protect every variable either by hardware
or software. But for important variables such as in FILE
structure, we can use software to encrypt them. For exam-
ple, a filename or a file descriptor id can be regarded as a
possible “jump pointer” to the external file system. This re-
quires software approach to protect the integrity of any file
structures. For embedded systems without file systems, the
concern of such attacks is not necessary. How to protect
the FILE structure from buffer overflow attacks will be one
of our future research topics.

5 Application of HSAP to Various Proces-
sors

In this section, we show that the HSAP technique can be
applied to any type of processors to defend against buffer
overflow attacks. We use the four classes of processors to
illustrate that the applicability of our technique is indepen-
dent of architectures.

5.1 Processor Class 1 (Intel-x86-like processors)

 

arguments
return address 

sp

fp

Memory growth 

Stack growth

previous frame pointer (fp)

local variables

Figure 5. A typical stack structure for class 1
processors.

For class 1 processors, a typical stack structure after a
function is called is shown in Figure 5. When a function
is called in this class of processors, arguments, return ad-
dress, and frame pointer (fp) are pushed into the stack se-
quentially. Then the value of fp is changed to point to the
address that stores the previous frame pointer in the stack.
Next, the stack pointer (sp) is decreased to leave space for
local variables. When returning from the function, a “ret”
instruction will be called. In this “ret” instruction: 1) The
stack pointer (sp) is changed to point to the address that
stores the previous frame pointer based on the value of fp;
2) The previous frame pointer is popped to fp; 3) The return
address is popped to Program Counter. Then the execution
is returned to the caller in the next cycle.

Since arguments, return address and the previous frame
pointer all are stored below fp, they are protected if a write

operation is denied when its address is equal to or bigger
than fp. So we can directly implement stack smashing pro-
tection of HSAP technique on this class of processors by
checking the address of a write based on fp in the pipeline.
For the second component, Function Pointer XOR, the re-
quired secure instructions can be added into a secure in-
struction extension and easily implemented because they
only need very simple hardware.

5.2 Processor Class 2 (Sun-Sparc-like processors)
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other register values 
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Figure 6. A typical stack structure for class 2
processors.

The stack structure of class 2 processors (Figure 6) is
similar to that of class 1 processors. However, there are
two main differences between them. First, in class 2 pro-
cessors, the return address of the current function is stored
in a special register instead of in the stack in class 1 proces-
sors. For example, it is stored in register �	 in Sun Sparc
processors. There is still one return address stored in the
stack (previous return address in Figure 6) when a function
is called, but it is the return address of a caller. Using the
C program in Figure 1(a) as an example, in class 2 proces-
sors, after function copy() in main() is called, the previous
return address in the stack in Figure 6 is the return address
of main(), and the returning address of copy() is stored into
a register. Since the return address is stored in a register in
class 2 processors, a buffer overflow attack can only change
the value of previous return address in an attack. There-
fore, it makes attacks a little harder. But an attack can still
be activated after returning from a caller. Second, the space
in the stack is left not only for local variables but also for
the calling information. If there are no function calls in a
function, then the calling information is empty; otherwise,
the calling information such as arguments, previous return
address, previous frame pointer, etc., will be put into this
area ( the shadow area in Figure 6).

In spite of these differences, the application of the
HSAP technique on class 2 processors is the same as that
on class 1 processors because arguments, previous return
address and the previous frame pointer all are stored below
fp.



5.3 Processor Class 3 (ARM-like processors)
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Figure 7. A typical stack structure for class 3
processors.

In class 3 processors, the sequence of the parameters in
the stack (Figure 7) is different from that in class 1 proces-
sors when a function is called. Note that the addresses that
store return address and the previous stack pointer are less
than the address that fp points to. Thus, to protect these
values from the buffer overflow attacks, we need to check
the address that decreases a constant from the value of fp in
the hardware boundary check. This constant is decided by
the real hardware. For example, in ARM 32-bit processors,
this constant should be 8.

5.4 Processor Class 4 (TI-5x-like processors)

The stack structure for class 4 processors is shown in
Figure 8 when a function is called. In this class of proces-
sors, there is no frame pointer. Since sp will be changed in
the function later, we can not use it as the base address in
hardware boundary check. To make our HSAP work, we
need to add a register to record the address that stores re-
turn address when a function is called. This can be simply
implemented as follows: when a “call” instruction is exe-
cuted (to call a function), extra functions are added into this
instruction so that return address is written to our register.
Then in the address check phase in the pipeline, we will
compare the address of a write with the value of this reg-
ister. Using this implementation, we don’t need to change
the source code.
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arguments 
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Figure 8. A typical stack structure for class 4
processors.

6 Comparison and Experiments
In this section, we first compare overhead caused by

our HSAP technique with that caused by PointGuard and

StackGuard, respectively. Then we experiment with our
HSAP technique in ARM Evaluator-7T simulation devel-
opment environments and summarize the protection effec-
tiveness.

6.1 The Overhead Comparison

6.1.1 HSAP vs. StackGuard

Stack Smashing Attacks
StackGuard HSAP

Overhead 7 additional � �

instructions
for each call

Support Compiler Hardware

Table 1. The comparison of HSAP and Stack-
Guard.

To protect against stack smashing attacks, StackGuard
needs seven additional instructions for each function call.
In our HSAP technique, the stack smashing protection is
implemented by adding a pipeline stage to do hardware
boundary check. Therefore, the overhead introduced ap-
proximates to 0. While HSAP needs the hardware support
to achieve this protection, StackGuard needs the compiler
support. Table 1 summarizes the comparison results.

6.1.2 HSAP vs. PointGuard

PointGuard protects all pointers by encrypting their val-
ues and decrypting them before dereferencing (an option is
given to manually select whether or not protect a pointer).
Our technique uses the similar idea to protects function
pointers only. Since function pointers are basic pointers
that must be protected in PointGuard, the overhead intro-
duced by HSAP is less than or equal to that introduced by
PointGuard. Still HSAP provides the same level of security
as PointGuard does in term of function pointer protection
because a corrupted pointer finally needs to change a jump
pointer to activate a buffer overflow attack.

6.2 Experiments

We experiment with our HSAP technique in ARM
Evaluator-7T simulation development environments. The
simulation development environments are built up on a
Linux PC (Red Hat Linux 7.3) based on the methods in-
troduced in [36]. The environments include a ARM-elf
GNU cross compiler, a GNU debugger, and a C runtime
library. The GNU debugger is used as a ARM instruc-
tion set simulator. Based on [6–8, 31–33], we implement
various C vulnerable programs and corresponding attack
programs. They cover all known types of attacks on dif-
ferent places including stack, heap and BSS. We compare
our HSAP technique with StackGuard, StackShield, IBM
SSP, and LibSafe introduced in Section 2. In the experi-
ments, we first obtain the assembly code using ARM-elf



Methods Source Various Buffer Overflow Attacks
Code Stack Smashing Attacks Shared Function Pointer Local Function

Needed Table Attacks Pointer Attacks
for S.C. fp arguments return address stack heap BSS stack heap BSS

HSAP No Yes Yes Yes Yes Yes Yes Yes Yes Yes
StackGuard Yes No No Yes No No No No No No
StackShield Yes No No Yes No No No No No No
IBM SSP Yes Yes Yes/No Yes No No No No No No
LibSafe Yes Yes Yes Yes No No No No No No

PointGuard Yes No Yes/No No Yes Yes Yes Yes Yes Yes

Table 2. Security effectiveness comparison.

cross compiler, and then secure the assembly code based
on different methods. Finally, the secure assembly code
is executed on the GNU debugger’s ARM instruction set
simulator.

Table 2 summarizes the test results. In the table, “No”
denotes that the corresponding method listed in Column
“Methods” fails to protect a vulnerable program from the
corresponding attacks under field “attack” ; “Yes” de-
notes that the method succeeds; “Yes/No” denotes that
the method either fails or succeeds for different programs.
Column “Source Code Needed for S.C.” lists whether the
source code of a component is needed when checking
whether the component has been protected by this method.

The results in Table 2 show that our HSAP technique
can defend more types of buffer overflow attacks. All
methods except HSAP and PointGuard can not protect
against the shared function pointer attacks and local func-
tion pointer attacks. To protect against the stack smash-
ing attacks, StackGuard and StackShield can only protect
against the attacks that overflow return address. Both of
them fail to protect against the stack smashing attacks by
changing fp or arguments. IBM SSP can basically protect
against the stack smashing attacks. But it fails in some
cases when attacks are through arguments. For example,
it fails when the program has a structure that has a pointer
and a character array. To check whether a software com-
ponent has been protected, HSAP doesn’t need the source
code while all other methods do.

7 Conclusion

In this paper, we proposed the Hardware/Software Ad-
dress Protection (HSAP) technique to defend embedded
systems against buffer overflow attacks. We first classi-
fied buffer overflow attacks into two categories and then
provided two defending components correspondingly. We
showed that our HSAP technique can be applied to vari-
ous processors. We experimented our HSAP technique in
ARM on ARM Evaluator-7T simulation development en-
vironments. The experimental results show that our HSAP
technique can defend more types of buffer overflow attacks
with little overhead compared with the previous work.
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